

Assembly and Machine
Language - Fall 1397 (2018)
Midterm Exam

Instructor:
B. Nasihatkon

Name: ID: Azar 1397 - November 2018

Functions from the book

call print_int prints EAX as a signed
integer

call print_nl prints a newline character

Use 32-bit Netwide assembler code on a Linux
machine.

Programming
Write programs in the designated code
area as follows:

label command arguments

loop1: call prog2

 add eax, ebx

prog2:

Question 1​ (16 points) After running the next assembly instructions
 mov AX, 12

 shl AX, 2

 mov AL, 8Eh

 not AX

a) What will be the ​binary​ representation of AX? Why? (4 points)

b) What is the Hexadecimal representation of AX? Why? (4 points)

c) As an ​unsigned integer​, what ​decimal​ number does AX represent? Why? (4 pts)

K. N. Toosi University of Technology

d) As a ​2's complement signed integer​, what decimal number does AX represent?
Why? (4 points)

Question 2​ The following assembly code prints five lines of output. What number is
printed in each line and why? Assume a little-endian architecture. You may write the
answers as a sum of products. (15 points)

segment .data

lbl: dd 1,10,100,1000,10000

segment .text

 ⋮
 mov eax, [lbl]

 call print_int

 call print_nl

 mov eax, [lbl+1]

 call print_int

 call print_nl

 mov eax, [lbl+2]

 call print_int

 call print_nl

 mov eax, [lbl+3]

 call print_int

 call print_nl

 mov eax, [lbl+4]

 call print_int

 call print_nl

K. N. Toosi University of Technology

Question 3 ​In each piece of assembly code in the left column, write a single assembly
instruction performing the computations on​ EAX​ and also ​EDX​ (if they change). Explain
your answer. (22 points)

 Single Instruction Explanation

 neg eax

 dec eax

 not eax

 xor eax, -2

cmp eax, 0

jge positive

mov edx,-1

jmp end1

positive:

mov edx, 0

end1:

 mov ecx, 32

loop1:

 xor eax, 1

 ror eax, 1

 loop loop1

mov ebx, 1

loop1:

xor eax, ebx

test eax, ebx

jnz endloop1

shl ebx,1

jnc loop1

endloop1:

K. N. Toosi University of Technology

Question 4​ The C function ​gcd ​on the left receives two parameters and computes their
Greatest Common Divisor (GCD) using the formula ​GCD(a,b) = GCD(b,a%b)​. Complete
the assembly program on the right to call ​gcd​(16,12)​ and print the return value using the
printf​ function from the C standard library. You are not allowed to use the ​print_int
function. (20 points)

int gcd(int a, int b) {

 int r;

 while (b != 0) {

 r = a % b;

 a = b;

 b = r;

 }

 return a;

}

label command arguments

segment​ .data

segment​ .text

extern

global

; call gcd(16,12) and print the result

main​:

 mov ebx​, ​0

 mov eax​, ​1

 int 0x80

K. N. Toosi University of Technology

Question 5​ We do the opposite of Question 4. Now, you have to write the gcd function
in assembly such that the C code on the left is able to call it. Complete the assembly code
to write the body of the gcd function. Use appropriate directives (global, extern, etc.) if
needed. ​Observe all C calling conventions.​ ​Your algorithm must be the same as the
C function in Question 4.​ (27 points)

#include <stdio.h>

int gcd(int a, int b);

int main() {

 int c;

 c = gcd(16,12);

 printf("%d\n", c);

 return 0;

}

label command arguments

segment​ .text

gcd​: push ebp

 mov ebp​, ​esp

label command arguments

K. N. Toosi University of Technology

