

Assembly and Machine
Language - Fall 1397 (2018)
Midterm Exam

Instructor:
B. Nasihatkon

Name: ID: Azar 1397 - November 2018

Functions from the book

call print_int prints EAX as a signed
integer

call print_nl prints a newline character

Use 32-bit Netwide assembler code on a Linux
machine.

Programming
Write programs in the designated code
area as follows:

label command arguments

loop1: call prog2

 add eax, ebx

prog2:

Question 1 (16 points) After running the next assembly instructions
 mov AX, 12

 shl AX, 2

 mov AL, 8Eh

 not AX

a) What will be the binary representation of AX? Why? (4 points)

b) What is the Hexadecimal representation of AX? Why? (4 points)

c) As an unsigned integer, what decimal number does AX represent? Why? (4 pts)

K. N. Toosi University of Technology

d) As a 2's complement signed integer, what decimal number does AX represent?
Why? (4 points)

Question 2 The following assembly code prints five lines of output. What number is
printed in each line and why? Assume a little-endian architecture. You may write the
answers as a sum of products. (15 points)

segment .data

lbl: dd 1,10,100,1000,10000

segment .text

 ⋮
 mov eax, [lbl]

 call print_int

 call print_nl

 mov eax, [lbl+1]

 call print_int

 call print_nl

 mov eax, [lbl+2]

 call print_int

 call print_nl

 mov eax, [lbl+3]

 call print_int

 call print_nl

 mov eax, [lbl+4]

 call print_int

 call print_nl

K. N. Toosi University of Technology

Question 3 In each piece of assembly code in the left column, write a single assembly
instruction performing the computations on EAX and also EDX (if they change). Explain
your answer. (22 points)

 Single Instruction Explanation

 neg eax

 dec eax

 not eax

 xor eax, -2

cmp eax, 0

jge positive

mov edx,-1

jmp end1

positive:

mov edx, 0

end1:

 mov ecx, 32

loop1:

 xor eax, 1

 ror eax, 1

 loop loop1

mov ebx, 1

loop1:

xor eax, ebx

test eax, ebx

jnz endloop1

shl ebx,1

jnc loop1

endloop1:

K. N. Toosi University of Technology

Question 4 The C function gcd on the left receives two parameters and computes their
Greatest Common Divisor (GCD) using the formula GCD(a,b) = GCD(b,a%b). Complete
the assembly program on the right to call gcd(16,12) and print the return value using the
printf function from the C standard library. You are not allowed to use the print_int
function. (20 points)

int gcd(int a, int b) {

 int r;

 while (b != 0) {

 r = a % b;

 a = b;

 b = r;

 }

 return a;

}

label command arguments

segment .data

segment .text

extern

global

; call gcd(16,12) and print the result

main:

 mov ebx, 0

 mov eax, 1

 int 0x80

K. N. Toosi University of Technology

Question 5 We do the opposite of Question 4. Now, you have to write the gcd function
in assembly such that the C code on the left is able to call it. Complete the assembly code
to write the body of the gcd function. Use appropriate directives (global, extern, etc.) if
needed. Observe all C calling conventions. Your algorithm must be the same as the
C function in Question 4. (27 points)

#include <stdio.h>

int gcd(int a, int b);

int main() {

 int c;

 c = gcd(16,12);

 printf("%d\n", c);

 return 0;

}

label command arguments

segment .text

gcd: push ebp

 mov ebp, esp

label command arguments

K. N. Toosi University of Technology

